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D-0-4002 Halle, PSF 763, Germany 
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D-0-4200 Merseburg, Geusaer Str . , Germany 

ABSTRACT 

A method for establishing in the framework of continuous thermo- 
dynamics the stability criteria for multiple critical states of increasing 
order is presented. The method applies to a relatively general class of 
Gibbs free energy relations for polymer solutions: The function replacing 
the X-term in the classic Flory-Huggins theory is permitted to depend on 
a finite number of moments of the polymer distribution so as to embrace 
most Gibbs free energy relations used in practice. In this way, determi- 
nant criteria for multiple critical states are formulated that are analogous 
in structure to  those in traditional (discrete) thermodynamics. However, 
the dimension of the determinants is reduced from N (number of poly- 
mer species) to  n (number of moments taken into account). 

INTRODUCTION 

The well-known determinant criterion for an m-fold critical point in an N + 
D,=O; j = 0 ,  . . . ,  m 
D,n+l + 0 

1 component system reads (compare, e.g., [l]): 

(1)  
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372 BERGMANN ET AL. 

D,=  

where the determinant Do is given by 

ao,-,/ax, a~,_,/ax, . - .  a D, - I /ax, 
aWax,ax, a2G/ax; . . .  aZ~/ax2axN 
a2waxNax1 a2c/axNax2 . . . a2c/ax; 

; j =  1 ,2 ,  . . .  (3) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I a2G/axf a2~/ax,ax2 . . . aZG/axIxN I 

and the other determinants result successively from 

Here G is the molar Gibbs free energy and X , ,  X,, . . . , X ,  are the independent 
mole fractions of the system (X,  + XI + . . . + X, = 1). For polymer solutions, 
it is more convenient to imagine all molecules to be divided into segments of equal 
size and to use segment-molar quantities instead of molar ones. Substituting in Eqs. 
(2) and (3) the segment-molar Gibbs free energy for G and the independent 
segment fractions $,, $,, . . . , $N for XI, X,, . . . , X,, the critical point criterion 
retains the form of Eq. (1). The main problem in treating polymer solutions is the 
size of the determinants because, owing to the polydispersity of all synthetic poly- 
mers, N is a very large number. 

This paper aims at reducing the problem to the case where, in the classic 
Flory-Huggins expression for e, the X-term is replaced by a function according 
to (R-gas constant, T-temperature, P-pressure) 

ZE 
(4) 

- 
- = r(T,P,T;, ,  . . . , r , )  
RT 

i.e., where EE depends on the polymer distribution only by n moments 
N 

7; = C r;i+j; i = I ,  2,  . . . , n 
j =  1 

Here rj is the segment number, and the exponents ki are real numbers. 
Fundamental investigations of this problem were published by Irvine and 

Gordon [ 2 ] ,  who showed that, in this case, D, and DI also depend only on a 
limited number of moments. In this way, the dimension of the determinants to be 
considered could be reduced drastically by transition to an equivalent thermody- 
namic system possessing the same values of those moments that are necessary for 
calculating the critical state [3, 41. The present authors [ 5 ,  61, on the basis of 
continuous thermodynamics, formulated determinants with the dimension n, I Q I , 
and I Qi 1 ,  characterizing the critical states of polymer solutions. These considera- 
tions could be generalized to the critical states of polymer blends [7]. 

In these papers the question was not discussed whether the critical point con- 
sidered is a simple or a multiple one or whether or not it is stable. Important results 
on these problems were presented by solc et al. [8,9] restricted to  the Flory-Huggins 
model; i.e., l7 depends on only one moment TI ,  the zero-th moment ( k ,  = 0): =c"/ 
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STABILITY OF POLYMER SYSTEMS. IV 373 

RT = F(T,P,$(,) = x(T,P)$,(l - go). This model was also the first one which was 
generalized to  polydisperse polymer solutions in the framework of continuous ther- 
modynamics [ 11. 

In the present paper the technique used there and in [lo] for establishing 
successively the stability criteria for multiple critical states with increasing order 
will prove to be suitable for generalization to a continuous treatment. Three equiva- 
lent criteria for multiple critical states - a transformation criterion, a variation crite- 
rion, and a determinant criterion - will be considered on the discrete basis. But only 
the second one may easily be transformed to  continuous thermodynamics, which is 
based on the direct application of a continuous distribution density function W ( M )  
in the thermodynamic calculations. Here W ( M )  dM gives the relative segment frac- 
tion of all polymer species with segment numbers between M and M + dM. After 
neglecting linear terms, in continuous thermodynamics is given by 

where Go and ro are segment fraction and segment number of the solvent, respec- 
tively, $ is the overall segment fraction of the polymer, and r = r(M) is the segment 
number of the polymer species identified by M. In this paper all integrals are to be 
taken over the total occurring M-interval. Of course, in continuous thermodynamics 
the moments are given by 

- 
r r  = Srki$wdw i = 1 , 2 ,  . . . , n  (7) 

To avoid thrusting the thermodynamic relations into the background by presenting 
voluminous mathematical proofs, only the outline of the mathematical derivations 
will be given. The interested reader will find the details in [ 1 11. 

DISCRETE TREATMENT 

In the discrete case, higher-order stability criteria possess many common fea- 
tures with extremum conditions sufficient for functions of several variables: A 
stable or metastable critical point corresponds to  a degenerate local minimum of E .  
In this section such extreme conditions will be developed; then the question arises 
whet her they may be transformed to  continuous thermodynamics. 

By means of the transformation 

h, = X,h!” + (1  - 6,,)h,(’) with h, = d$,(i = 1, . . . , N )  (8) 

(where 6, = 1 if i = j and 6, = 0 otherwise), we showed [lo] that the sign of the 
Taylor expansion of up to  fourth-order terms depends, near the critical point, on 
the sign of a quadratic form of the quantities h:’)*, hl ’ ) ,  . . . , 15:’) leading to a 
sufficient stability criterion for a simple stable critical point in the form Do = 0, 
D, = 0 ,  D, > 0. For Dz < 0 it is a simple unstable critical point, and for Dz = 0 a 
multiple critical point. 

In this paper the multiplicity and the stability will be studied. To this end, the 
higher-order partial derivatives of at the critical point are needed. For brevity, 
the following symbols are introduced 
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374 BERGMANN ET AL. 

al"lE( T,P,$,, . . . , $N) 

a$;I . . . a$? a ( v )  = a(v,rC/) = (9) 

N 

where v is a multi-index v = (v,, . . . , vN) with 1 v I = c Y,, and $ means (only in 

this section) the vector of independent mole fractions $ = . . . , GN). Using 
the unit vectors e, = (0, . . . , 1, 0, . . . , 0)  ( p  = 1, . . . , N; 1 is situated at 

the p-th position), we may write v = c v,, e,. In this way, e.g., the derivative 

ai"I G(T,P,q l ,  . . . , $,,,)/a$: a$, becomes a (3el + e,, 4). The general stability cri- 
terion is formulated in terms of the symmetrical matrices 

, = I  

N 

p = l  

( : " ' I )  ' a ( " ( ( 2 k  + 2 ) e , )  a ' ~ l ( ( k  + l ) e ,  + e, ... a"'( (k  + I ) e ,  + e,) ) (10) a '* ' ( (k  + l ) e ,  + e,) a (2e2)  ... a(e ,  + e,) 
A ' X J  = __ - - - - - - - - __ - - - - - - - - - - - -- - - - 

a" ' ( ( k  + 1)e,  + e,) a(e ,  + e N )  ... a ( 2 e N )  i 
Here a'" = a (i.e., A'") equals the matrix of the second-order partial derivatives) 
and a(k) (v) may be calculated successively according to  the formula 

where the summation is to be taken over all indexes 7 = (O,T*, . . . , 7.J obeying v I  
- kl71 L 0. Furthermore, A,?') = ( - 1 )I+' 1 A:k-" I , and means the ma- 
trix obtained from A(k- ' )  by neglecting the first row and the j-th column; i.e., 

(ke ,  + e,) inA'k-l) .  Finally, A,(') = A, and T !  = 
T, ! .  In this paper the assumption is made that all functions are differentiable as 

often as needed to calculate the needed expressions. 
The quantity decisive for stability considerations is the nonlinear part of the 

segment-molar Gibbs free energy E. Designating the critical composition by $' and 

is the cofactor of 

introducing 
AG = F ( $ )  - E($') - VZ($O)($  - $ O )  

the stability criterion may be expressed in the following form: 

Criterion I: If ( I )  A$')($') is positive definite, 
(2) IA'k)($')) = 0 f o r k  = 0, I ,  . . . , m -I, 
(3) a'k)((2k + l)e,; $') = 0 for  k = 0, I, . . . , m, and 
(4) IA"n'(rC/o) I > 0, 

then there exists a region around $o such that 
AG > 0 for  all $ # Go within this region; 
i.e., $O is a local minimum point of A z .  

In the language of thermodynamics, this means that in $o a (2m - 1)-fold 
stable critical state exists. Due to the complexity of the recursion formula Eq. 
( l l ) ,  this criterion is not convenient for the user. Therefore, equivalent and more 
convenient statements were derived. To this end, the determinant I A'''($) 1 is ex- 
panded with respect to the first row, do($) = E E l  A,a(e, + e,; $), and the direc- 
tional derivatives in the direction given by the vector 1 = (Al, . . . , AN) are calcu- 
lated successively. This leads to 
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STABILITY OF POLYMER SYSTEMS. IV 375 

Criterion 11: Eqs. (2), (3), (4) in Criterion I are equivalent to 
(Ira) dk($') = 0 f o r k  = 0, I ,  . . . , 2m i I 
(IIW d 2 d $ ' )  0 

Finally, there is a third way of calculating based on consideration of the following 
determinants 

Do(+) = l ~ ~ o w ) l  

Then the criterion is 

Criterion 111: Eqs. (2), (3), (4) in Criterion I are equivalent to 
(IIIa) Dk($7 = 0 f o r k  = 0, I ,  . . . , 2m + I 
(Ilrbl Dzm+z($') 0 

Whereas the equivalency of Criteria I1 and 111 may easily be shown by induction, the 
proof of the equivalency of Criteria I and I1 needs wider algebraic reformuIations, 
including remarks 4.1-4.3 in [12].  

The following points are important to  permit the transition to the continuous 
case: 

-dj+,($) may be calculated as a simple differential in the direction 1 (Gateaux 
differential), i.e., 

do equals the second differential of c / R T ,  i.e., 

d o ( $ )  = S2c($; l ) /RT  

- For A ,  - positive definite, (A1 = 0 the vector I introduced above may be 
characterized in the following way: If s ( h )  = C:=, a(e ,  + ej)  h, h,, then the rela- 
tion 

mins (h )  = s ( h o )  (16) 

holds if and only if a number CY exists obeying h' = al. 

CONTINUOUS TREATMENT 

This section aims at establishing by continuous thermodynamics a criterion 
- for stable critical states of polymer solutions described by momentum-dependent 
G,-relations. The last two remarks of the preceding section permit the transforma- 
- 
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376 BERGMANN ET AL. 

tion of Criterion I1 to the continuous case where is given by Eq. (6). As shown 
earlier [6 ] ,  d($W)O = - r ( M ) $ W ( M )  C,",,l r(M)'f cljyy now bears the minimum 
property of Eq. (16), resulting in 

5 

G 
RT 

S2 - (T,P,$W;d($W)O) = 0 

Here yo is the solution of Qy = 0 (under the assumption rank Q = n - 1, Q-posi- 
tive semidefinite) with 

Q = R-' + c, c = ( c ~ , ) ; ~ ~ ~ ,  cr, = dzrv(dFraF,) , r '  = r + In $o 
- 
R = (TrJ):J=lr  f ,  = S(r(M))' l  + ' I + '  $ W ( M )  dM (18) 

Furthermore, the elements of the matrix R-' ,  which is the inverse of R, will be 
designated by i,. In Eq. (18) $o and $ are the segment fraction of the solvent and 
the overall segment fraction of all polymer species, respectively; ro and r are the 
segment number of the solvent and of the individual polymer species, respectively; 
W is the normalized and $ W the nonnormalized distribution density function of 
the polymer, M designates the polymer species. 

Without restricting the generality, the matrix Q, which is obtained from Q by 
neglecting the first row and the first column, may be assumed to have full rank: 
I I f 0. In this way the vector yo may be considered to be a function of $ W in a 
certain region around the spinodal point investigated, and generally we may write 
Qv = a ( 1  QI / 0, . . . , O)T with a arbitrarily real. According to Q = R-' + 
C, the quantity d(J/mo may be written as d(J/Wl0 = r (M)$W(M) C&, 

This equality holds exactly for the spinodal points. In their regions discussed 
above, the term - a r ( M ) $ W ( M )  lQl/lGl has to be added on the right-hand 
side. This term vanishes at the spinodal for multiple critical points, including a 
certain number of variations in the point investigated. Hence, for stability consider- 
ations, this additional term may be neglected. In this way we obtain 

(r(M))k"lJyo, * 

fo corresponds to do in the discrete case. 
In an earlier paper [6] the critical point was calculated by means of the relation 

a3Z/RT ($W;d($W)O) = 0 since it could be shown that for all $ W obeying IQ 
( $ W ) (  = 0 this relation applies if and only if IQ, I  = 0. This statement may be 
included in the general treatment by showing that for all $ W obeying I Q($ W )  I = 
0 the equivalency applies: fl  ($ W )  = Sfo( $W,d( $W ) O )  = 0 if and only if 1 Q1 1 = 
0. Indeed, forming the first differential of fo with respect to d($W)O we obtain 
Sfo = <6Qy0, yo> + 2<Qy0,Gy0>. (To abbreviate, in differentials with respect 
to d($W)' from now on the increase will not be specified explicitly). Since < 
Qyo,6yo> = (a 1 Q 1 / IQI )Ga = 0 and St,,=-- ~ ~ , d , ~ , ~ i d ~ ~ i j ~ i ~ ~ i ~ ~ y ~  (according to 
RR-' = l and ,  hence, 6R-I = - F - ' 6 ( R  ) R - ' ) ,  we obtain with Sc, = C&l c,,,,y, 0 
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STABILITY OF POLYMER SYSTEMS. IV 377 

According to [6], at the spinodal the right-hand side may also be written in the 
form a3 I Q I / 1 I proving the statement. 

For further considerations the differential 6fl is important, reading 

with f i j P  = - c Fdef?id?je?pf 
d,e,  f = I 

and ?ijpk = c ( -7de f s  + c (TdeliTtfs + rdfuTres + rpfUT;rdS)?~UI)?id?je?~fpfikJ 
d,e,f,s= 1 u J = l  

Here the higher-order partial derivatives of the (extended) function F’ occur, i.e., 
c,,, , Is  = a”r”/(c37,1 . . . d F f S ) ,  and the higher-order moments r r l ,  ,,g = j 
( 1 , ’  +kls+s-lll,W dM. On this basis, the following sufficient stability criterion for 

critical states of polymer solutions may be derived: 

- 

Stability Criterion: If  Q-positive semidefinite, rank Q = n - 1 
and $(I) f o  = 0, (2) f, = 0, 
(3) f i  > 0 then the thermodynamic system is stable or 
metastable at the critical point. 

The form of this criterion is similar to considerations of the discrete case (e.g., 
compareJ and d,). In an analogous way it may be shown that Criterion Ill also has 
an equivalent for momentum-dependent excess parts. Let us define matrices Q, by 

Here the D-derivative of the determinant I QI- l  I is to be performed in columns 

applying - = qljp, 
mi, 
DFP DF, 

= qlJpk etc. Then the equivalent criterion becomes 
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378 BERGMANN ET AL. 

Eqs. (I), (2), (3) in the Stability Criterion are 
equivalent to (I) 1 QI = 0, (2) I Q1 I = 0, (3) I Q2 I > 0 

So far, criteria for simple critical states have been derived. However, the 
met hod presented here also permits the successive formulation of sufficient determi- 
nant criteria for higher-order critical states. Starting with I Q2 I = 0 or f z  = 0, the 
quantities Sf2 = f3 and Sf3 = f 4  may be calculated. If f 3  = 0 and f 4  > 0, then the 
multiple critical point may be shown to be stable or metastable. In analogy to  fi, 
determinants corresponding tof3 and f 4  may be formulated: 

Successive derivations lead to the following general and sufficient criterion: 

General Stability Criterion: I f  Q-positive semidefinite, 
rank Q = n - 1 andif 
( I )  IQ,I = O ( j  = 0, I, . . . , 2m - I )  
(2) 1 Q2,,, I > 0 (m - positive, integer) 
then the (2m - I )  fold critical point 
is stable or metastable 

Defining the derivative D/Di,  for momentum-dependent excess parts in an appro- 
priate way, this criterion reproduces the form of Criterion 111. This enables us to 
consider n-rowed determinants (typically n is not larger than 5 )  instead of N-rowed 
determinants (usually N is of the order of 1000). In this way the computing expense 
and numerical problems (rounding errors) are reduced drastically, especially if all 
the moments may be calculated analytically. 

DISCUSSION 

The question is how many moments of the distribution density function I) W 
are needed to apply the criteria IQ,I = 0 (or > 0) if I” contains n different mo- 
ments. Obviously, the answer depends on which moments influence I”. To point 
this out more clearly, let us define 7, in this subsection by 

(24) 

The answer to our question becomes simple for n = 1: In this case r’ = r ’ ( T O )  
resulting in Qs = Q,(Fo,F,, . . . , rs+, ) ;  i.e., Q;, depends on s + 2 differ- 
ent moments. In a similar simple way the cases r’  = . . . , F,,), 
I” = F ’ ( F 0 , F - , ,  . . . , r - n ) ,  and I” = I”(7- l ,~o , i l ,  . . . , r,,), n 2 1, may be 
treated. The results are Qs = Qs(Fo,Fl,.  . . , r s (n+l )+2n+l ) ,  Qs = Qs(Fs+,,rs,. . . , 
r-(s+zl(n-l)-l), and Qs = Q,(F- l ,Fo ,  . . . , r(s+2)n+s+l), respectively; i.e., Q, de- 
pends on (s + 2 ) ( n  + l ) ,  (s + 2)n  + 1, and (s + 2 ) ( n  + 1) + 1 consecutive 
moments, respectively. Hence, the generalization of the truncation theorem dating 
back to Irvine and Gordon [2] reads: 

If r ’  depends on 7 ,  , . . , rn then all thermodynamic systems with equal 
moments Fo, . . . , rs(n+,,+ln+, (s > I )  possess the same stability behavior in an 
(s - 1)-fold critical state. 

- ri = J r ’ I ) W d M ;  i = 1 , 2 , .  . . , n 

- 

- - 

- - 
- - 

- 

- 
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STABILITY OF POLYMER SYSTEMS. IV 379 

For a given number n of different moments r k  occurring in r ’ , the maximum 
number of moments occurring in Q, equals (:+’+*) - 1 ,  as may easily be shown by 
induction. This number is reached, for example, if J?’ = I”(ik,, . . , rk,) with k, 

- - - 1 ,  (t = 1 ,  . . . , n). Thus, if I” depends on three moments, the 

number of moments necessary to establish the stability of a simple critical point (s 
= 2) varies between 9 (for r’ = I”@-i,Fo,TJ) and, say, 34 (for r’ = I?(70,F,,F,o)). 
For a threefold critical point (s = 4) these numbers are 13 and 83, respectively. 

This example shows that the truncation method (i.e., replacing a multicompo- 
nent system by a system with a small number of components with the same values 
of the relevant moments) comes relatively soon to the bounds of practicality if 
multiple critical points are to be considered. 

- 

(s + 2)‘-1 
s +  1 

REFERENCES 

PI 
[31 
[41 

151 

171 

D. Browarzik, H. Kehlen, M. T. Ratzsch, and J. Bergmann, J. Macromol. 
Sci. - Chem., A27, 549 (1990). 
P .  Irvine, and M. Gordon, Proc. Roy. SOC. Lond., A375, 397 (1981). 
P .  Irvine, Ph.D. thesis, University of Essex, 1979. 
H. Galina, M. Gordon, P. Irvine, and L. A. Kleintjens, Pure Appl. Chem., 
54, 365 (1982). 
S .  Beerbaum, J .  Bergmann, H. Kehlen, and M. T. Ratzsch, Proc. Roy. SOC. 
Lond., A406, 63 (1986). 
S .  Beerbaum, J. Bergmann, H. Kehlen, and M. T. Ratzsch, Ibid., A414, 103 
(1987). 
S .  Beerbaum, J. Bergmann, H. Kehlen, and M. T. Ratzsch, J. Macromol. 
Sci. -Chem., A24, 1445 (1987). 
K. solc, L. A. Kleintjens, and R. Koningsveld, Macromolecules, 17, 573 
(1984). 
K. Solc and K. Battjes, Ibid., 18, 220 (1985). 
J. Bergmann, H. Kehlen, M. T. Ratzsch, and H. Teichert, Z .  Phys. Chemie 
(Leipzig), 271, 869 (1990). 
H. Teichert, Ph.D. thesis, Halle, 1991. 
J. Bergmann, H. Kehlen, and M. T. Ratzsch, Z .  Angew. Math. Mech., 65, 
343 (1985). 

Received May 30, 1991 
Revision received September 23, 1991 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
6
 
2
4
 
J
a
n
u
a
r
y
 
2
0
1
1


